Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(20): 9280-9286, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37811843

RESUMO

The fabrication of artificial structures using a twisted van der Waals assembly has been a key technique for recent advancements in the research of two-dimensional (2D) materials. To date, various exotic phenomena have been observed thanks to the modified electron correlation or moiré structure controlled by the twist angle. However, the twisted van der Waals assembly has further potential to modulate the physical properties by controlling the symmetry. In this study, we fabricated twisted bilayer WTe2 and demonstrated that the twist angle successfully controls the spatial inversion symmetry and hence the spin splitting in the band structure. Our results reveal the further potential of a twisted van der Waals assembly, suggesting the feasibility of pursuing new physical phenomena in 2D materials based on the control of symmetry.

2.
Sci Rep ; 12(1): 10936, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768480

RESUMO

We present a dry pick-and-flip assembly technique for angle-resolved photoemission spectroscopy (ARPES) of van der Waals heterostructures. By combining Elvacite2552C acrylic resin and 1-ethyl-3-methylimidazolium ionic liquid, we prepared polymers with glass transition temperatures (Tg) ranging from 37 to 100 â„ƒ. The adhesion of the polymer to the 2D crystals was enhanced at [Formula: see text]. By utilizing the difference in [Formula: see text], a 2D heterostructure can be transferred from a high-[Formula: see text] polymer to a lower-[Formula: see text] polymer, which enables flipping its surface upside down. This process is suitable for assembling heterostructures for ARPES, where the top capping layer should be monolayer graphene. The laser-based micro-focused ARPES measurements of 5-layer WTe2, 3-layer MoTe2, 2-layer WTe2/few-layer Cr2Ge2Te6, and twisted double bilayer WTe2 demonstrate that this process can be utilized as a versatile sample fabrication method for investigating the energy spectra of 2D heterostructures.

3.
Nano Lett ; 19(12): 8806-8810, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714089

RESUMO

The discoveries of intrinsic ferromagnetism in atomically thin van der Waals crystals have opened a new research field enabling fundamental studies on magnetism at two-dimensional (2D) limit as well as development of magnetic van der Waals heterostructures. Currently, a variety of 2D ferromagnetism has been explored mainly by mechanically exfoliating "originally ferromagnetic (FM)" van der Waals crystals, while a bottom-up approach by thin-film growth technique has demonstrated emergent 2D ferromagnetism in a variety of "originally non-FM" van der Waals materials. Here we demonstrate that V5Se8 epitaxial thin films grown by molecular-beam epitaxy exhibit emergent 2D ferromagnetism with intrinsic spin polarization of the V 3d electrons despite that the bulk counterpart is "originally antiferromagnetic". Moreover, thickness-dependence measurements reveal that this newly developed 2D ferromagnet could be classified as an itinerant 2D Heisenberg ferromagnet with weak magnetic anisotropy, broadening a lineup of 2D magnets to those potentially beneficial for future spintronics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...